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Abstract

The paper proposes an alternative approach for reformulating the problem of heat interchange between grey
surfaces. An integral Fredholm equation of second kind is still found, as for the usual treatment, but the unknown

function depends only on geometry and surface properties, being independent of local surface temperature and heat
¯ux, which can then be related to each other in a simple way by the solution of the integral equation. Examples of
the solution of the integral equation by series or by decomposition in a complete set of orthogonal normalised

functions are reported. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Radiant interchange between non-black surfaces is a

fundamental problem encountered in a variety of en-
gineering situations. The general formulation of the
problem requires energy balances at any surface lo-
cation, taking into account energy arriving from all

directions in space. A main assumption is usually
made in tackling the problem: re¯ection and emission
from participating surfaces is di�used, i.e. Lambert's

Law is obeyed. This assumption implies that radiation
directionality need not be considered. A further
assumption is sometime made to simplify the problem:

the incident energy ¯ux on a given surface is uniformly
distributed. Such assumption allows the formulation of
relatively simple calculation procedures [1] from which

radiation quantities (such as mean radiosity or over-
all-heat transfer rate) can be found by solving a set of
linear algebraic equations.
However, except for the simplest geometry, the inci-

dent energy ¯ux is not uniform even for uniform tem-
perature distributions over the surfaces. This implies
that local heat ¯ux may vary over the surfaces and

that over-all-heat transfer rate evaluation may not be
accurate enough.
The solution of the problem after lifting the simpli-

fying assumption of uniform incident energy ¯ux leads

to an integral equation for the distribution of the sur-
face heat ¯ux or the surface temperature (see e.g.
[2,3]). The governing equation is an integral Fredholm

equation of the second kind and its general form is:

f�x� � f�x� �
�
A

K�x, y�f�y� dAy �1�

where f(x) is a known function (e.g. a function of the
surface temperature) and f�x� is the unknown to be
determined (e.g. radiosity or local heat ¯ux). A part of

very simple situations (e.g. spherical cavity with uni-
form surface properties), analytical solutions of such
equation do not exist, whereas numerical solutions can

be found in a number of ways [3]: (i) successive ap-
proximations; (ii) reduction to algebraic equation by
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numerical quadrature; (iii) Taylor series expansion [4];
(iv) approximate separable kernels [5]; (v) variational
methods [6,7]; (vi) transformation in integro-di�eren-
tial equation (Ambarzumian method) [8]. The alterna-

tive approach proposed here leads again to an integral
equation where the unknown function depends only on
geometry and surface properties (like re¯ectivity) but

not on temperature or heat ¯ux. The knowledge of
that function would allow to solve any radiant inter-
change problem relative to that geometry and surface

properties. Moreover, in the quite common case where
the cavity can be decomposed into a ®nite number of
surface having uniform properties, the unknown func-

tion can be written as a converging series of functions
depending only on the geometry (that can then be
evaluated once for ever) and only the coe�cients of
the series depend in a simple way on the surface prop-

erties. Finally, for those situations where the series
converges too slowly, an alternative method can be
applied, based on the use of complete ortho-normal

sets of functions, an example of application is given.

2. The governing equation

Let us consider two surfaces (i, k ) of radiosity Ji�xi �
and Jk�xk� where x is the point co-ordinate on the sur-

faces. The power arriving onto k from i can be evalu-
ated (for di�use surfaces) as:

dQi4 k � Ji
cos�yi � cos�yk �

pR 2
dAi dAk

referring to Fig. 1 for symbols.
As yi, yk and R are both function of xi and xk the

group a�xi, xk� � cos�yi � cos�yk �
pR 2 is a function of �xi, xk�:

The irradiation arriving on xk can then be evaluated
as:

G�xk � �
�
A

Ji�xi �a�xi, xk � dAi �2�

where the integration should be extended to all the sur-
faces forming a cavity.

Let us now consider a grey cavity, the temperature
and emittance of the surface will be considered a func-
tion of position x. The energy balance at each point of
the surface gives:

j�x� � J�x� ÿ G�x� �3�
where j�x� is the heat ¯ux, J�x�� e�x�sT 4�x��r�x�G�x�
is the radiosity and r�x� � 1ÿ a�x� � 1ÿ e�x�:
The usual formulation of the problem is obtained by

eliminating j�x� and G�x� from Eqs. (2) and (3) and
the de®nition of radiosity, yielding:

J�x� � e�x�sT 4�x� � �1ÿ e�x��
�
A

J�y�a�y, x� dAy �4�

Let us now consider the following re-formulation of
the problem: Eq. (4) can be rewritten as:

Nomenclature

a, b, c linear dimensions (m)
Aj area of the jth surface (m2)
B(x, y) function (mÿ2)
G irradiance (W mÿ2)
H(x, y) resolvent kernel of integral equation
J radiosity (W mÿ2)
K(x, y) kernel of integral equation
R distance (m)
R0 sphere radius (m)

T temperature (K)
x, y, z vector position
Zn�x� normalised Legendre polynomial

a, b coe�cient
d�x� Dirac delta function
dmn Kroeneker symbol

e emittance
j thermal ¯ux (W mÿ2)
j�k�n �x� complete set of orthogonal normalised

functions de®ned on kth surface
y angle (rad)
r re¯ectivity

s Stefan±Boltzman constant (W mÿ2 Kÿ4)
x, Z, z co-ordinates on plane surfaces

Fig. 1. Couple of in®nitesimal surfaces exchanging energy by

radiation.
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�
A

J�y�
�
d�yÿ x� ÿ �1ÿ e�x��a�y, x�

�
dAy � e�x�sT 4�x�

�5�

where d�yÿ x� is the Dirac delta function.
De®ning: B�y, x��d�yÿx�ÿ �1ÿ e�x��a�y, x�, Eq. (5)

can be solved if a function B ÿ1�x, z� exits such that:�
A

B�y, x�B ÿ1�x, z� dAx � d�yÿ z� �6�

in fact, multiplying Eq. (5) by B ÿ1�x, z� and integrat-
ing yields:

J�z� �
�
A

e�x�sT 4�x�B ÿ1�x, z� dAx �7�

A function b�x, z� can be de®ned as:

�1ÿ e�z��b�x, z� � d�xÿ z� ÿ B ÿ1�x, z� �8�

and substitution into Eq. (6) gives:

d�yÿ z� �
�
A

�
d�yÿ x� ÿ �1ÿ e�x��a�y, x�

��
d�xÿ z�

� �1ÿ e�z��b�x, z�� dAx � d�yÿ z�
ÿ �1ÿ e�z��a�y, z� � �1ÿ e�z��b�y, z�
ÿ �1ÿ e�z��

�
A

�1ÿ e�x��a�y, x�b�x, z� dAx

or:

b�y, z� ÿ a�y, z� �
�
A

�1ÿ e�x��a�y, x�b�x, z� dAx �9�

The integral Eq. (9) gives the solution of the problem:
after ®nding b�y, z�, the function B ÿ1�y, z� can be com-
puted by Eq. (8) and Eq. (7) becomes:

J�z� �e�z�sT 4�z�
� �1ÿ e�z��

�
Ax

e�x�sT 4�x�b�x, z� dAx �10�

Further substitution into Eqs. (2) and (3) yields:

G�x� �
�
A

e�z�sT 4�z�b�z, x� dAz �11�

j�x� � e�x�
�
sT 4�x� ÿ

�
A

e�z�sT 4�z�b�z, x� dAz

�
�12�

The function b�x, z� depends only on the surface ge-
ometry (through a�x, y�� and properties (through e�x��
and Eqs. (11) and (12) relate surface temperature to

local heat ¯ux once the function b�z, x�, which is inde-
pendent of T�x� and j�x�, is known. This particular
reformulation of the problem allows to separate the

geometry and properties of the cavity from the particu-
lar temperature and heat ¯ux ®eld.

Eq. (9) is again a Fredholm integral equation of sec-
ond kind, as Eq. (1), but once the solution is found for
a given cavity, the problem of ®nding the local heat

¯ux from the temperature ®eld (or viceversa) is solved
for any temperature ®eld (or heat ¯ux ®eld).
An advantage of this reformulation can be recog-

nised in unsteady problems: when heat ¯ux and surface
temperature ®elds are varying with time, Eq. (12) can
always be used to relate them as the function b�z, x�
does not change with time (if surface properties are
not changing too). Then the integral equation must be
solved once and the solution used to compute j�x� or
T�x� at each time step.

3. The solution of the integral equation

The integral equation (9) can be rewritten in a more
symmetric form as:

b�y, z� � a�y, z� �
�
A

r�x�a�y, x�b�x, z� dAx �9b�

whose solution can be written as:

b�x, z� � a�x, z� �
�
A

H�x, y�a�y, z� dAy

where H�x, y��r�y�H0�x, y� is the resolvent kernel (see

e.g. [9,10]) and:

H0�x, y� � a�x, y� �
X1
n�2

Hn�x, y�

where:

H2�x, y� �
�
A

a�x, z�r�z�a�z, y� dAz,

and generally:

Hn�1�x, y� �
�
A

a�x, z�r�z�Hn�z, y� dAz

The proof can be found in Appendix A.
Only in very few cases, the functions Hn�x, y� can be

calculated exactly, depending on the complexity of the
functions a�x, y� and r�y�:
A typical situation is that where the cavity surfaces

can be decomposed into N surfaces having uniform
radiative properties (i.e. constant values of r�x�).
In this case, Eq. (9b) can be rewritten as:

b�x, y� � a�x, y� �
XN
k�1

rk

�
Ak

a�x, zk �b�zk, y� dAzk �9c�
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and its solution is:

b�x, y� � a�x, y� �
XN
k�1

rk

�
Ak

H0�x, zk �a�zk, y� dAk

or:

b�x, y� � a�x, y� �
XN
k�1

rkY
k
�2��x, y�

�
XN
k, l�1

rkrlY
kl
�3��x, y� � � � � �13�

where:

Yk
�2��x, y� �

�
Ak

a�x, zk �a�zk, y� dAzk

Ykl
�3��x, y� �

�
Ak

�
Al

a�x, zk �a�zk, zl �a�zl, y� dAzkdAzl

..

.

and now the functions Y�a��x, y� depend only on the

cavity geometry. The independent variables in a�x, y�,
b�x, y� Y�x, y� span over all the cavity surfaces, but it
is possible to split each function in a ®nite number

�N�N � of functions whose independent variables
span over a couple of surfaces: aik�xi, yk�, bik�xi, yk�,
Ym

2; ik�xi, yk�, etc. The series Eq. (13) converges rapidly

if the re¯ectivities ri are small; for example, if the cav-
ity is made by two half-spheres of radius R0 with equal
and uniform re¯ectivity r:

aik�xi, xk � � 1

4pR 2
0

i, k � 1, 2

and:

Ym
�2�i, k�xi, yk � �

�
Am

a�xi, zm �a�zm, yk � dAzm

� 1ÿ
4pR 2

0

� 2 �
Am

dAzm �
Amÿ

4pR 2
0

� 2 � 1

8pR 2
0

Ym, n
�3�i, k �

�
Am

�
An

a�xi, zm �a�zm, zn �a�zn, yk � dAzm dAzn

� 1ÿ
4pR 2

0

�3 �
Am

�
An

dAzm dAzn �
AmAnÿ
4pR 2

0

�3
� 1

16pR 2
0

and generally:

Ym, n
�p�l, k �

1

2 p�1pR 2
0

Then for the present case:

bik�xi, xk � � 1

4pR 2
0

ÿ
1� r� r 2 � � � �

�
� 1

4pR 2
0 �1ÿ r�

� 1

4pR 2
0 e

If the series Eq. (13) is truncated at the Mth term, to
obtain an accuracy better than 1%, one needs M � 2
for r � 0:2, M � 6 for r � 0:5 and M � 20 for r �
0:8:
From this very simple example, one can see that the

solution reported by Eq. (13) is practicable only when

surface re¯ectivities are small. However, in many prac-
tical situations, the peculiar form of Eq. (9c) allows an
alternative solution of the problem.

Let us consider one of the surfaces �k� and suppose
that it is possible to de®ne a complete set of normal-
ised orthogonal functions j�k�n �xk� such that:�
Ak

j�k�n �xk �j�k�m �xk � dAk � dnm

where dnm is the Kroeneker symbol. If this is possible
for all the surfaces, then it is possible to expand any
L2-function de®ned over the surfaces Al, Ak as:

alk�xl, xk � �
X1

n, m�1
anmlk j�l�n �xl �j�k�m �xk � �14a�

or

blk�xl, xk � �
X1

n, m�1
bnmlk j�l�n �xl �j�k�m �xk � �14b�

where the sets j�k�n �xk� and j�i �m �xi � can be di�erent. Eq.

(9c), which can be re-written as a system of integral
equations:

blk�x, y� � alk�x, y� �
XN
n�1

rn

�
An

aln�xl, zn �bnk�zn, yk � dAzn

can now be transformed in a set of linear algebraic

equations by Eqs. (14a) and (14b):

bnmlk � anmlk �
XN
j�1

rja
np
lj b

pm
jk �15�

From a practical point of view, the series in Eqs.
(14a) and (14b) can be truncated at a certain term, the
functions:
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âlk�xl, xk � �
XM

n, m�1
anmlk j�l�n �xl �j�k�m �xk � �16�

are an approximation of alk and the ``distance'' kalkÿ
âlkk �

�
Al

�
Ak
�alk ÿ âlk� 2 dAl dAk decreases when M

increases. After truncation, the solution of the ®nite

set of Eq. (15) can be found by ordinary methods,
obtaining the coe�cients: b̂

nm

lk and the functions:

b̂lk�xl, xk � �
XM

n, m�1
b̂
nm

lk j�l�n �xl �j�k�m �xk � �17�

that can be considered an approximation of the actual
solution bik�xi, xk�; the di�erence: o�xi, xk� � bik�xi, xk�
ÿ b̂ik�xi, xk� is equal to:

o�xi, xk � �
XM

n, m�1

�
bnmik ÿ b̂

nm

ik

�
j�i�n �xi �j�k�m �xk �

�
X1

n, m�M�1
bnmik j�i�n �xi �j�k�m �xk �

which may be used for an estimation of the error.
In the next section, an example of this procedure

will be discussed.

4. The rectangular cavity

Let us consider a rectangular cavity as in Fig. 2, by
introducing the co-ordinate system �x, Z, z� sketched in

Fig. 3 the functions aik are:

akk � 0 8k

a12
ÿ
x1, Z1; x2, Z2

� � 4c 2

p
h
4c 2 � �x2 ÿ x1 � 2��Z2 ÿ Z1 � 2

i 2
� a21

ÿ
x2, Z2;x1, Z1

�

a1k
ÿ
x1, Z1;zk, Zk

�
� �zk � c��x1 � b�

p
h
�zk � c� 2��x1 � b� 2��Zk ÿ Z1 � 2

i 2
� ak1

ÿ
zk, Zk;x1, Z1

�
for k � 3, 4, 5, 6

ak2
ÿ
zk, Zk;x2, Z2

� � ak1
ÿ
zk, Zk;x2, Z2

�
for k � 3, 4, 5, 6

a2k
ÿ
x2, Z2;zk, Zk

� � ak2
ÿ
zk, Zk;x2, Z2

�
for k � 3, 4, 5, 6

a35
ÿ
z3, Z3;z5, Z5

� � 4b 2

p
h
4b 2 � �z3 ÿ z5 � 2��Z3 ÿ Z5 � 2

i 2
� a53

ÿ
z5, Z5;z3, Z3

�

a46
ÿ
z4, Z4;z6, Z6

� � 4a 2

p
h
4a 2 � �z4 ÿ z6 � 2��Z4 ÿ Z6 � 2

i 2
� a64

ÿ
z6, Z6;z4, Z4

�
a34
ÿ
z3, Z3; z4, Z4

�
� �z3 � c��z4 � c�

p
h
�z3 � c� 2��z4 � c� 2��Z3 ÿ Z4 � 2

i 2
� a43

ÿ
z4, Z4; z3, Z3

�
a36
ÿ
z3, Z3;z6, Z6

� � a63
ÿ
z6, Z6;z3, Z3

� � a34
ÿ
z3, Z3;z6, Z6

�
The set of orthogonal functions j�i �m �xi � chosen here is

that of the normalised Legendre polynomials. A nor-
malised Legendre polynomial of order n is de®ned as:

Zn�x� � 1

n!2n

���������������
2n� 1

2

r
dn

dxn
�x 2 ÿ 1�n

where x, y 2 �ÿ1, 1�: For the present case, it is possible
to set:

xk � xk
b
; yk � Zk

a
; zk � zk

c
;

for k � 1, . . . , 6, and for each surface:

j�i�nm�x i, yi � � Zn�x i �Zm�yi �

then, the functions aik can be approximated as:Fig. 2. Rectangular cavity and co-ordinate system.
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âlk�xl, xk � �
XM

n, m, p, q�1
anmpq
lk j�l�nm�xl �j�k�pq �xk �

where:

anmpq
lk �

�
Al

�
Ak

alk�xl, xk �j�l�nm�xl �j�k�pq �xk � dAl dAk

The example of calculation shown here was performed
by setting: a � b � 1, c � 2, and choosing M � 3 for

the approximation, obtaining e < 1% where:

e � 100
kalk ÿ âlkk
kalkk � 100

�
Al

�
Ak

�alk ÿ âlk � 2 dAl dAk�
Al

�
Ak

�alk � 2 dAl dAk

After the coe�cients anmpq
lk were calculated (and Fig. 4

reports the absolute value of anmpq
12 as a function of

N � n�m� p� q), the solution bik can be found by

Fig. 3. Systems of co-ordinate used for couples of surfaces forming the rectangular cavity.

Fig. 4. Absolute value of Legendre coe�cients of a12�x, y� for the rectangular cavity as a function of the monomial order

N � n�m� p� q:
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solving the (®nite) set of linear algebraic equations:

b̂
nmpq

lk � anmpq
lk �

XN
j�1

rj
XM
s, t�0

anmst
lj b̂

stpq

jk �15b�

by usual numerical routines.
An analytical solution, to which compare the nu-

merical results, can be found by putting: r1 � r, rk �
0 for k � 2, . . . , 6 (see Appendix B). In such case, Eq.

(15b) simpli®es:

bnmpq
lk � anmpq

lk � r
XM
s, t�0

anmst
l1 bstpq1k �15c�

and for the present case:

bnmpq
11 � 0 bnmpq

1k � anmpq
1k bnmpq

k1 � anmpq
k1

bnmpq
lk � anmpq

lk � r
XM
s, t�0

anmst
l1 astpq1k for l, k 6�1

from which it is possible to evaluate bik�xi, xk�: A com-
parison with the analytical solution is presented in

Table 1 for the function b22�x2, x 02 � where the integral
in:

b22
ÿ
x2, x 02

� � r
�
A1

a21�x2, x1 �a12
ÿ
x1, x 02

�
dA1

was evaluated numerically.
As it can be seen, the accuracy e% � 2�b̂22ÿb22 �

b̂22�b22
� 100

is better than 1% all over the domain of the function,
showing that the method appears to be applicable at
least when the cavity can be subdivided in an accepta-

bly small number of surfaces.

5. Conclusions

The proposed approach to the problem again leads

to an integral Fredholm equation of second kind, then
the mathematics of the problem is not simpli®ed com-
pared to the usual approaches, however, such equation
contains an unique unknown function which depends

only on the cavity geometry and surface properties.
This separation of geometry and surface properties
from surface temperature and heat ¯ux allows to solve

the integral equation once for a given geometry and
surface properties and use the solution to compute
heat ¯uxes from any surface temperature ®eld (or vice

versa) in a simple way.
The series solution of the equation can be useful

when the surface re¯ectivity is relatively small, other-
wise the number of term necessary for a given accuracy

may become too large. A possible alternative method
is based on the use of a truncated expansion by a com-
plete set of ortho-normal function (like Legendre poly-

nomials or others) which reduces the problem to the
solution of a ®nite set of linear algebraic equations.

Appendix A

The equation b�y, z� ÿ a�y, z� � �
A a�y, x�r�x�b�x,

Table 1

Values of the function b22�x2, x 02 �: comparison between the

analytical solution �b22� and the approximated solution �b̂22�
obtained by the method of the orthogonal functions for the

rectangular cavity

x2 Z2 x 02 Z 02 bÃ22 b22 e (%)

0 0 0 0 0.001345 1.35Eÿ03 ÿ0.61176
0 0 0 0.3 1.33Eÿ03 1.34Eÿ03 ÿ0.43348
0 0 0 0.5 1.31Eÿ03 1.32Eÿ03 ÿ0.33546
0 0 0 0.95 1.23Eÿ03 1.23Eÿ03 ÿ0.34394
0 0 0.5 0 1.31Eÿ03 1.32Eÿ03 ÿ0.33546
0 0 0.5 0.3 1.30Eÿ03 1.30Eÿ03 ÿ0.16025
0 0 0.5 0.8 1.23Eÿ03 1.23Eÿ03 ÿ7.08Eÿ02
0 0 0.8 0 1.26Eÿ03 1.26Eÿ03 ÿ0.3379
0 0 0.8 0.95 1.15Eÿ03 1.15Eÿ03 ÿ0.07464
0 0.5 0 ÿ0.8 1.22Eÿ03 1.22Eÿ03 ÿ6.18Eÿ02
0 0.5 0 ÿ0.3 1.30Eÿ03 1.30Eÿ03 ÿ0.15591
0 0.5 0.2 ÿ0.7 1.24Eÿ03 1.24Eÿ03 5.03Eÿ02
0 0.5 0.2 0 1.31Eÿ03 1.31Eÿ03 ÿ0.30103
0 0.5 0.5 ÿ0.7 1.21Eÿ03 1.21Eÿ03 0.283974

0 0.5 0.5 0 1.28Eÿ03 1.28Eÿ03 ÿ5.92Eÿ02
0 0.5 0.7 ÿ0.95 1.13Eÿ03 1.13Eÿ03 0.270799

0 0.5 0.9 ÿ0.3 1.19Eÿ03 1.19Eÿ03 0.160486

0 0.5 0.9 0 1.21Eÿ03 1.21Eÿ03 ÿ1.23Eÿ02
0.5 0.5 ÿ0.9 0 1.17Eÿ03 1.17Eÿ03 0.253089

0.5 0.5 ÿ0.9 0.5 1.15Eÿ03 1.14Eÿ03 0.517338

0.5 0.5 ÿ0.9 ÿ0.5 1.14Eÿ03 1.13Eÿ03 0.51847

0.5 0.5 ÿ0.9 ÿ0.9 1.07Eÿ03 1.07Eÿ03 0.566607

0.5 0.5 ÿ0.7 0 1.21Eÿ03 1.21Eÿ03 0.286915

0.5 0.5 ÿ0.7 0.5 1.19Eÿ03 1.18Eÿ03 0.553138

0.5 0.5 ÿ0.7 0.9 1.12Eÿ03 1.12Eÿ03 0.603089

0.5 0.5 ÿ0.7 ÿ0.5 1.18Eÿ03 1.17Eÿ03 0.553476

0.5 0.5 ÿ0.7 ÿ0.9 1.11Eÿ03 1.10Eÿ03 0.592772

0.5 0.5 ÿ0.5 0 1.24Eÿ03 1.24Eÿ03 0.211503

0.5 0.5 ÿ0.5 0.5 1.22Eÿ03 1.21Eÿ03 0.480881

0.5 0.5 ÿ0.5 ÿ0.5 1.21Eÿ03 1.20Eÿ03 0.481239

0.5 0.5 ÿ0.5 ÿ0.9 1.14Eÿ03 1.13Eÿ03 0.51847

0.5 0.5 0 ÿ0.9 1.17Eÿ03 1.17Eÿ03 0.253089

0.5 0.5 0 0.5 1.25Eÿ03 1.25Eÿ03 0.210158

0.5 0.5 0 0.9 1.19Eÿ03 1.18Eÿ03 0.261992

0.5 0.5 0.5 ÿ0.5 1.22Eÿ03 1.21Eÿ03 0.480881

0.5 0.5 0.5 0.5 1.23Eÿ03 1.22Eÿ03 0.480526

0.5 0.5 0.5 0.9 1.16Eÿ03 1.16Eÿ03 0.527856

0.5 0.5 0.7 0 1.23Eÿ03 1.22Eÿ03 0.289449

0.5 0.5 0.9 0 1.19Eÿ03 1.18Eÿ03 0.261992

0.5 0.5 0.9 ÿ0.5 1.15Eÿ03 1.15Eÿ03 0.528902

0.5 0.5 0.9 ÿ0.9 1.09Eÿ03 1.08Eÿ03 0.575168
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z� dAx is a Fredholm integral equation of second kind,
with kernel: K�x, y� � a�x, y�r�y�: Its solution can be

obtained under the form:

b�y, z� � a�y, z� �
�
A

H�y, x�a�x, z� dAx �A1�

where H�x, y� is called ``resolvent Kernel'' and:

H�x, y� � K�x, y� � K2�x, y� � K3�x, y� � � � �

� K�x, y� �
X1
n�2

Kn�x, y�

where:

K2�x, y� �
�
A

K�x, z�K�z, y� dAz,

K3�x, y� �
�
A

�
A

K�x, z�K�z, t�K�t, y� dAt dAz

�
�
A

K�x, z�K2�z, y� dA

and generally:

Kn�1�x, y� �
�
A

K�x, z�Kn�z, y� dAz:

The series converges provided that:

�
A

�
A

K 2�x, y� dAx dAy < 1 �see �10��:

For the present case, the condition is:
�
A

�
A a 2�x,

y�r2�y� dAx dAy < 1 and, due to the fact that r�y� < 1,

the condition is satis®ed if:
�
A

�
A a 2�x, y� dAx dAyR1:

Let us consider the integral:
�
A

�
A a 2�x, y� dAx dAy,

by substituting the de®nition of a�x, y�:

�
A

�
A

a 2�x, y� dAxdAy

�
�
A

�
A

cos 2�yx � cos 2
ÿ
yy
�

p 2R4
dAx dAy

�
�
A

�
A

cos�yx � cos
ÿ
yy
�

p 2
dox doy

�
� 2p

0

�p=2
0

� 2p

0

�p=2
0

cos�yx � cos
ÿ
yy
�

p 2

� sin
ÿ
yy
�

dyy djy sin�yz � dyz djzy

� 4

� 2p

0

�p=2
0

cos
ÿ
yy
�

sin
ÿ
yy
�

dyy djy

� 2p

0

�p=2
0

� cos�yz � sin�yz � dyz djz � 1

and the condition is satis®ed.

Appendix B

A simple analytical solution of Eq. (9b) can be
found under the following conditions: (a) the cavity
can be decomposed into N di�erent surfaces having

constant properties (i.e. the re¯ectivity of each surface
is independent of position); (b) only one surface (let
say surface 1) has 0 < r < 1 and it is convex (i.e.
a11 � 0), for k 6�1: rk � 0:
Eq. (13) becomes:

b�y, z� � a�y, z� � r1

�
A1

a�y, x�b�x, z� dAx

or, by using the functions bik�xi, xk� and aik�xi, xk�:

bik�xi, xk � � aik�xi, xk � � r1

�
A1

ai1�xi, x1 �b1k�x1, xk � dA1

Then the following results are straightforward:

b11�x1, x1 � � a11�x1, x1 �
� r1

�
A1

a11�x1, x1 �b11�x1, xk � dA1 � 0

b1k�x1, xk � � a1k�xi, xk � � r1

�
A1

a11�x1, x1 �b1k�x1, xk � dA1

� a1k�x1, xk � for k 6�1

bk1�xk, x1 � � ak1�xk, x1 � � r1

�
A1

ak1�xk, x1 �b11�x1, x1 � dA1

� ak1�xk, x1 � for k 6�1
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bik�xi, xk � � aik�xi, xk � � r1

�
A1

ai1�xi, x1 �b1k�x1, xk � dA1

� aik�xi, xk � � r1

�
A1

ai1�xi, x1 �a1k�x1, xk � dA1

for i, k 6�1;

which is the solution of the equation in a closed form.
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